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I. INTRODUCTION 

One of the hardest problems in computational fluid dynamics is the modeling of medium rarefied gases with the 

Knudsen number in the range 0.005 – 1. In this case, the gas is rarefied to such a degree that using the Navier-

Stokes-Fourier equations is questionable, but it is not sufficiently rarefied that using Direct Simulation Monte Carlo 

(DSMC) methods is effective. It should be stressed that in recent years modeling of flows for Knudsen numbers in 

this range have become more and more important for many practical applications, ranging from the modeling of re-

entry of space vehicles into the atmosphere to modeling of microscale flows and heat transfer in microchannels. One 

of the ways to cover this range of Knudsen numbers is to use thirteen (or more) moment equations instead of the 

Navier-Stokes-Fourier 5 equations. 

 In 1949, Grad [1, 2] derived the 13 moment equations corresponding to the second order of the Knudsen 

number. Unfortunately, Grad’s moment equations sometimes produce unphysical solutions; for example, they fail to 

describe smooth shock structures for Mach numbers above a critical value [3]. In 2003, Struchtrup and Horrihon [4] 

regularized Grad’s 13 moment equations, extending them to third order of the Knudsen number. The authors have 

developed a new closure method which principally differs from well-known Chapman-Enskog method [5] (that was 

used to derive a closure of Euler’s gas dynamics equations), in which they have not used the Hermite polynomial 

representation of the velocity distribution function.   

In the present paper we suggest a new closure for Grad’s 13 moment equations by using a Hermite polynomial 

approximation for monatomic gas distribution function, and applying the Chapman-Enskog regularization method to 

Grad’s velocity distribution function that corresponds to his 13 moment equations. In our paper, the collision term is 

assumed to be in BGK form. It must be stressed that the equations obtained by this method differ from the equations 

obtained in [4]. One of the reasons is that in [4] the authors use 26 non-Hermite polynomials for approximation of 

the velocity distribution function and correspondingly 26 moments, while in our method we use 29 Hermite 

polynomials and consequently 29 moments. In other words, since we use the basis for approximation of the velocity 

distribution function which is non-congruent to the basis in [4], our set of equations must differ from the set of 

equations obtained in [4]. We explicitly show why our representation of the velocity distribution function has good 

physical sense. The integral representation for the 13 moments of the Boltzmann equation is presented in Section II, 



and Hermite polynomial approximation of the velocity distribution function is derived in Section III. Grad’s 

regularized 13 moment equations are obtained in Section IV, and conclusions are presented in Section V. 

II. INTEGRAL EQUATIONS FOR HEAT FLUX AND STRESS TENSOR 

The phase density of a monatomic ideal gas is described by the Boltzmann equation, 
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where n is the number density of gas molecules, f is the velocity distribution function, Vi = (Vx, Vy, Vz) is the particle 

velocity, xi = (x, y, z) are the particle coordinates, the integral means the integration over the entire velocity space, 

and St(n·f) is the collision term that accounts for the change in the velocity distribution functions due to collisions. 

Here we assume elastic collisions.   

 Let us introduce 13 moments of the particle distribution function:  as the mass density of gas molecules, ui = 

(ux, uy, uz) as the gas flow gas molecules, VT as the thermal velocity, qi = (qx, qy, qz) as the heat flux, and ij = (xx, 

xy,xz, yy , yz) as components of the stress tensors,  
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where m is the mass of a particle. Multiplying Eq. (1) by  
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and then integrating the obtained equations over the entire velocity space, taking into account that the number of 

colliding particles, their total momentum, and their total energy are conserved in collisions, after tedious algebra the 

first five moment equations that correspond to mass, momentum and energy conservation laws can be derived to the 

form given in [6], and the moment equations for qi, xy, and xx are 
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Changing the order of indexes (x, y, z) to (x, z, y) and (y, z, x) in Eq. (6) we obtain equations for xz and yz 

respectively, and to (y, x, z) in Eq. (7) an equation for yy.  

It is worth noting that there are no collision terms in the moment equations for , ui, and VT [7], while equations 

for heat flux and stress tensor, Eqs. (5) – (7), do include collision terms. Since collision terms can produce new 

moments, the set of these 13 moment equations in general is not self-contained. However, in the case of Maxwell 

molecules and BGK approximation of the collision term, 

 

          
ff

St(f) M




   where     

V

uV
Vf

T

TM 











 




2

22/32 )(
exp



 ,            (8) 

 

the collision terms do not produce any new moments; in Eq. (8)  is the collision time depending on coordinates and 

time. In other words, these approximations of the collision term do not mix the moments. This is a key point for any 

theory of moment approximation of the Boltzmann equation. In this paper we will use the BGK collision term; the 

case of Maxwellian molecules can be described in a similar way.  

                III. HERMITE POLYNOMIAL APPROXIMATION 

We assume here a Hermite polynomial approximation of the velocity distribution function. The velocity 

distribution function can be described as a combination of three-dimensional Hermite polynomials that correspond 

to x, y, z directions of the velocity. We represent the velocity distribution via the 29 Hermite polynomials 
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It should be stressed that all Ĥ  polynomials are orthoganals. Since the velocity distribution function fH has to satisfy 

Eqs. (2), we obtain that 11  , 0432  , and 01085  . Thus, the particle distribution function 

Hfn   has 29 variables,   ux , uy , uz , VT , 5 – 9, 11 – 29. It worth noting that the truncated velocity 

distribution function fH that consists of the first ten nonzero Hermite polynomials has the form of the Chapman-



Enskog and Grad’s velocity distribution functions [1, 2, 6]. In the next section it will be shown why we have 

selected this representation of velocity distribution function.   

IV. A CLOSURE OF GRAD’S 13 MOMENT EQUATIONS 

 Let us rewrite the equations for heat flux, Eq (5), and stress tensor, Eqs. (5) and (6) for the case of BGK collision 

term, Eq. (7), 
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where <….> are the left hand side terms in Eqs. (5) – (7) positioned after corresponding time derivatives. Equations 

for other components of stress tensor, as has been mention in Section II,  can be obtained by proper rotatation of 

indexes. To complete this system of equations, a velocity distribution function has to be chosen. Grad [1, 2] has 

suggested his velocity distribution function that is the trancated velocity distribution function fH , Eq. (9), with the 

first 10 non-zero terms and obtain his set of equations [1, 2]. 

Let us obtain a set of the 13 regularized Grad moment equations using the Hermite polynomial 

approximation of the velocity distribution function and the Chapman-Enskog closure method. First let us 

represent the under integral polynomials in the left-hand sides of Eqs. (5) for qx and Eqs. (6) and (7) in 

Hermite form: 
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where variables  are given in Eq. (9). The Hermite representations of the under integral polynomials in equations 

for qy, qz, xz, yz, yy, can be obtained by proper rotation of indexes in Eqs. (17) – (21). Thus, the complete list of 

Hermite polynomial that represents under integral polynomials in equations for heat flux and stress tensor is     
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Now following the Chapman-Enskog method [5], let us write the velocity distribution function as 
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where  f1 has a Hermite form. Since the velocity distribution function ·fM· f1 does not have to contribute into the 

previously obtained 13 moments ui , VT, qi, and ij, it follows that the Hermite polynomials included in the Grad’s 

velocity distribution function, Eq. (10) – (12), have to be excluded from  f1. But as the velocity distribution function 

·fM· f1 has to contribute into integrals in Eqs. (5) – (7), we obtain that f1, as follows from Eqs. (22) – (25), has to be a 

combination only of the Hermite polynomials presented in Eqs. (22) and (23); the Hermite polynomials presented in 

Eq. (24) and (25) are included in the Grad’s velocity distribution function, Eqs. (10) – (12). Subsequently, we obtain 

that 

 

                                                              



29

14
1

ˆ

i
ii Hf ,             (27) 

 

where functions Ĥ  are shown in Eqs. (13) – (15). Thus, we have shown that the chosen set of Hermite polynomials, 

Eqs. (9) – (15) has good physical sense for representing the velocity distribution function. 

Substituting fH, Eqs. (27), for f into Eqs. (16) and introducing the following set of M-moments:  
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we obtain the following equations for xq , xy , and xx :        
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where {….} are terms due to pure Grad’s velocity distribution function [1, 2]. Thus, to obtain equations for the heat 

flux and the stress tensor we have to derive equations for M-moments. As one can see there is no contribution of 

new M-moments in the equation for xx. The equations for other components of the heat flux and the stress tensor 

can be obtained by a proper rotation of the indexes in Eqs. (31) and (32). We have applied the Chapman-Enskog 

technique and obtained the following expression for M-moments: 
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Substituting M-moment equations into Eqs. (31) and (32) the equation for qx, and xy can be obtained. A proper 

rotation of indexes in Eqs. (33) – (37) allows one to obtain equations for the rest M-moments. 

V.    CONCLUSIONS 

We have presented a new set of moment equations for rarefied gas dynamics. Our equations are a closure for 

Grad’s 13 moment equations extended to the third order of the Knudsen number. We have assumed a Hermite 

polynomial approximation for the gas velocity distribution function and the BGK approximation of the collision 

term in the Boltzmann kinetic equation. We have also used the well-known Chapman-Enskog regularization method 

[5]. We have shown that the selected 29-term Hermite polynomial representation of the velocity distribution 

function makes good physical sense. Our equations differ from a similar set of equations obtained by Struchtrup and 

Torrihon [4]. One of reasons is that in [4], the authors use 26 non-Hermite polynomials for approximation of the 

velocity distribution function and, correspondingly, 26 moments, while in our method we use 29 Hermite 

polynomials and, consequently, 29 moments. Analysis of the predictions obtained by using both sets of equations 

with DSMC simulations, or numerical solutions of BGK model kinetic equations, is needed for verification of the 

applicability of the both methods. In the future we will attempt to derive a complete set of Grad’s 13 regularized 

moment equations. 
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