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Abstract. In the paper we suggest a new closure for Grad’s thirteen moment equations for medium rarefied gases by
using a Hermite polynomial approximation for the monatomic gas velocity distribution function, and applying the
Chapman-Enskog regularization method to Grad’s velocity distribution function that corresponds to his thirteen moment
equation. In our paper, the collision term of the Boltzmann equation is assumed to be in the Bhatnagar-Gross-Krook
(BGK) form. The velocity distribution function for resulting 13 regularized moment equations is presented.
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I. INTRODUCTION

One of the hardest problems in computational fluid dynamics is the modeling of medium rarefied gases with the
Knudsen number in the range 0.005 — 1. In this case, the gas is rarefied to such a degree that using the Navier-
Stokes-Fourier equations is questionable, but it is not sufficiently rarefied that using Direct Simulation Monte Carlo
(DSMC) methods is effective. It should be stressed that in recent years modeling of flows for Knudsen numbers in
this range have become more and more important for many practical applications, ranging from the modeling of re-
entry of space vehicles into the atmosphere to modeling of microscale flows and heat transfer in microchannels. One
of the ways to cover this range of Knudsen numbers is to use thirteen (or more) moment equations instead of the
Navier-Stokes-Fourier 5 equations.

In 1949, Grad [1, 2] derived the 13 moment equations corresponding to the second order of the Knudsen
number. Unfortunately, Grad’s moment equations sometimes produce unphysical solutions; for example, they fail to
describe smooth shock structures for Mach numbers above a critical value [3]. In 2003, Struchtrup and Horrihon [4]
regularized Grad’s 13 moment equations, extending them to third order of the Knudsen number. The authors have
developed a new closure method which principally differs from well-known Chapman-Enskog method [5] (that was
used to derive a closure of Euler’s gas dynamics equations), in which they have not used the Hermite polynomial
representation of the velocity distribution function.

In the present paper we suggest a new closure for Grad’s 13 moment equations by using a Hermite polynomial
approximation for monatomic gas distribution function, and applying the Chapman-Enskog regularization method to
Grad’s velocity distribution function that corresponds to his 13 moment equations. In our paper, the collision term is
assumed to be in BGK form. It must be stressed that the equations obtained by this method differ from the equations
obtained in [4]. One of the reasons is that in [4] the authors use 26 non-Hermite polynomials for approximation of
the velocity distribution function and correspondingly 26 moments, while in our method we use 29 Hermite
polynomials and consequently 29 moments. In other words, since we use the basis for approximation of the velocity
distribution function which is non-congruent to the basis in [4], our set of equations must differ from the set of
equations obtained in [4]. We explicitly show why our representation of the velocity distribution function has good
physical sense. The integral representation for the 13 moments of the Boltzmann equation is presented in Section I,



and Hermite polynomial approximation of the velocity distribution function is derived in Section III. Grad’s
regularized 13 moment equations are obtained in Section IV, and conclusions are presented in Section V.

1. INTEGRAL EQUATIONS FOR HEAT FLUX AND STRESS TENSOR

The phase density of a monatomic ideal gas is described by the Boltzmann equation,
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where n is the number density of gas molecules, f is the velocity distribution function, V; = (Vy, Vy, V,) is the particle
velocity, x; = (x, y, z) are the particle coordinates, the integral means the integration over the entire velocity space,
and St(n-f) is the collision term that accounts for the change in the velocity distribution functions due to collisions.
Here we assume elastic collisions.

Let us introduce 13 moments of the particle distribution function: p as the mass density of gas molecules, u; =
(uy, uy, u,) as the gas flow gas molecules, Vr as the thermal velocity, g; = (0x, ay, d.) as the heat flux, and &j; = (o,
Oy, O Oy, Oy) @S components of the stress tensors,
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where m is the mass of a particle. Multiplying Eq. (1) by
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and then integrating the obtained equations over the entire velocity space, taking into account that the number of
colliding particles, their total momentum, and their total energy are conserved in collisions, after tedious algebra the
first five moment equations that correspond to mass, momentum and energy conservation laws can be derived to the
form given in [6], and the moment equations for g, oy, and oy are
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Changing the order of indexes (x, y, z) to (x, z, y) and (y, z, x) in Eq. (6) we obtain equations for oy, and oy,
respectively, and to (y, X, z) in Eq. (7) an equation for .

It is worth noting that there are no collision terms in the moment equations for p, u;, and V+ [7], while equations
for heat flux and stress tensor, Egs. (5) — (7), do include collision terms. Since collision terms can produce new
moments, the set of these 13 moment equations in general is not self-contained. However, in the case of Maxwell
molecules and BGK approximation of the collision term,
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the collision terms do not produce any new moments; in Eq. (8) ris the collision time depending on coordinates and
time. In other words, these approximations of the collision term do not mix the moments. This is a key point for any
theory of moment approximation of the Boltzmann equation. In this paper we will use the BGK collision term; the
case of Maxwellian molecules can be described in a similar way.

I11. HERMITE POLYNOMIAL APPROXIMATION

We assume here a Hermite polynomial approximation of the velocity distribution function. The velocity
distribution function can be described as a combination of three-dimensional Hermite polynomials that correspond
to X, y, z directions of the velocity. We represent the velocity distribution via the 29 Hermite polynomials
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It should be stressed that all H polynomials are orthoganals. Since the velocity distribution function f,; has to satisfy
Egs. (2), we obtain that A; =1, A, =A3=A4=0, and Ag+Ag+Ag=0. Thus, the particle distribution function
n-fyy has 29 variables, p, uc, Uy, U, , Vr, As — Ag, A1z — Age. It worth noting that the truncated velocity
distribution function fy that consists of the first ten nonzero Hermite polynomials has the form of the Chapman-



Enskog and Grad’s velocity distribution functions [1, 2, 6]. In the next section it will be shown why we have
selected this representation of velocity distribution function.

IV. A CLOSURE OF GRAD’S 13 MOMENT EQUATIONS

Let us rewrite the equations for heat flux, Eq (5), and stress tensor, Egs. (5) and (6) for the case of BGK collision
term, Eq. (7),
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where <....> are the left hand side terms in Eqs. (5) — (7) positioned after corresponding time derivatives. Equations
for other components of stress tensor, as has been mention in Section Il, can be obtained by proper rotatation of
indexes. To complete this system of equations, a velocity distribution function has to be chosen. Grad [1, 2] has
suggested his velocity distribution function that is the trancated velocity distribution function fy , Eq. (9), with the
first 10 non-zero terms and obtain his set of equations [1, 2].

Let us obtain a set of the 13 regularized Grad moment equations using the Hermite polynomial
approximation of the velocity distribution function and the Chapman-Enskog closure method. First let us
represent the under integral polynomials in the left-hand sides of Egs. (5) for gx and Egs. (6) and (7) in
Hermite form:
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where variables y are given in Eq. (9). The Hermite representations of the under integral polynomials in equations
for q,, 0,, 6, Oy Oy, Can be obtained by proper rotation of indexes in Egs. (17) — (21). Thus, the complete list of
Hermite polynomial that represents under integral polynomials in equations for heat flux and stress tensor is
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Now following the Chapman-Enskog method [5], let us write the velocity distribution function as
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where f; has a Hermite form. Since the velocity distribution function zfy- f; does not have to contribute into the
previously obtained 13 moments p, u;, V1, o, and gy, it follows that the Hermite polynomials included in the Grad’s
velocity distribution function, Eq. (10) — (12), have to be excluded from f;. But as the velocity distribution function
zfiy- f1 has to contribute into integrals in Egs. (5) — (7), we obtain that f;, as follows from Egs. (22) — (25), has to be a
combination only of the Hermite polynomials presented in Egs. (22) and (23); the Hermite polynomials presented in
Eq. (24) and (25) are included in the Grad’s velocity distribution function, Egs. (10) — (12). Subsequently, we obtain
that
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where functions H are shown in Egs. (13) — (15). Thus, we have shown that the chosen set of Hermite polynomials,
Egs. (9) — (15) has good physical sense for representing the velocity distribution function.
Substituting fy, Egs. (27), for f into Egs. (16) and introducing the following set of M-moments:
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we obtain the following equations for gy, oyy, and oyy:
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where {....} are terms due to pure Grad’s velocity distribution function [1, 2]. Thus, to obtain equations for the heat
flux and the stress tensor we have to derive equations for M-moments. As one can see there is no contribution of
new M-moments in the equation for oy. The equations for other components of the heat flux and the stress tensor
can be obtained by a proper rotation of the indexes in Egs. (31) and (32). We have applied the Chapman-Enskog
technique and obtained the following expression for M-moments:
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Substituting M-moment equations into Egs. (31) and (32) the equation for gy, and o, can be obtained. A proper
rotation of indexes in Egs. (33) — (37) allows one to obtain equations for the rest M-moments.

V. CONCLUSIONS

We have presented a new set of moment equations for rarefied gas dynamics. Our equations are a closure for
Grad’s 13 moment equations extended to the third order of the Knudsen number. We have assumed a Hermite
polynomial approximation for the gas velocity distribution function and the BGK approximation of the collision
term in the Boltzmann kinetic equation. We have also used the well-known Chapman-Enskog regularization method
[5]. We have shown that the selected 29-term Hermite polynomial representation of the velocity distribution
function makes good physical sense. Our equations differ from a similar set of equations obtained by Struchtrup and
Torrihon [4]. One of reasons is that in [4], the authors use 26 non-Hermite polynomials for approximation of the
velocity distribution function and, correspondingly, 26 moments, while in our method we use 29 Hermite
polynomials and, consequently, 29 moments. Analysis of the predictions obtained by using both sets of equations
with DSMC simulations, or numerical solutions of BGK model kinetic equations, is needed for verification of the
applicability of the both methods. In the future we will attempt to derive a complete set of Grad’s 13 regularized

moment equations.
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